
Assessing and Adapting to Climate Change Intermountain Region – Focus on Infrastructure

Association of Conservation Engineers 9/27/16

Natalie Little, PE Forest Service, Ogden, Utah

We have lots of information! What is important? What isn't?

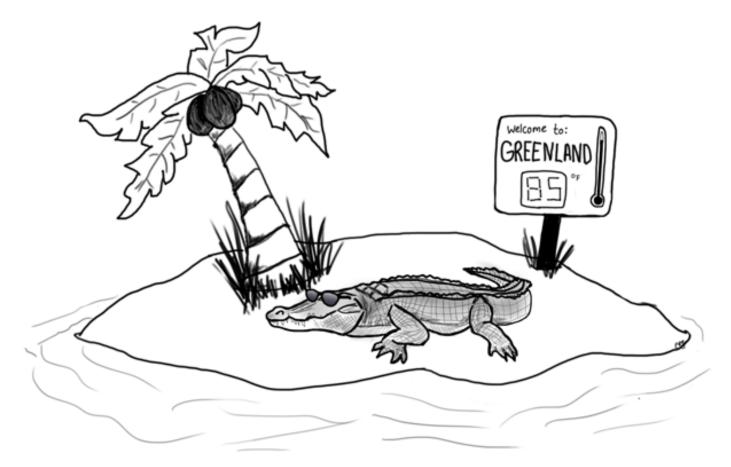
Climate Change Scorecard = accountability

Organizational Capacity

- 1 Employee Education
- 2 Designated Climate Change Coordinators
- 3 Program Guidance

Engagement

- 4 Science and Management Partnerships
- 5 Other Partnerships

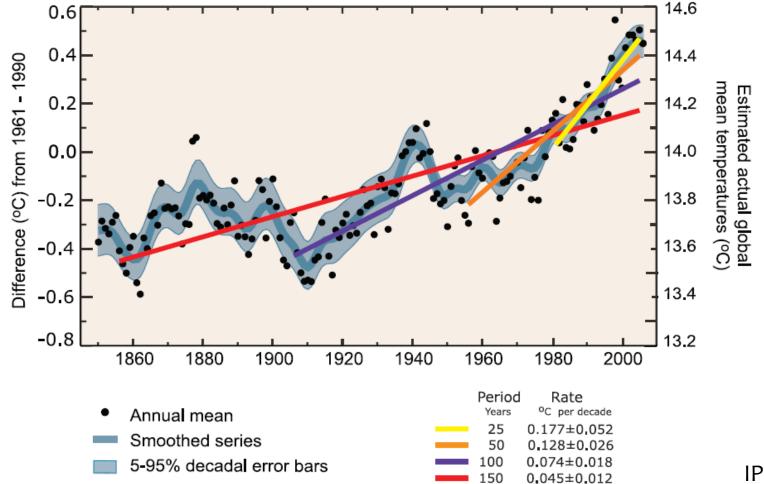

Adaptation

- 6 Assessing Vulnerability
- 7 Adaptation Actions
- 8 Monitoring

Mitigation and Sustainable Consumption

- 9 Carbon Assessment & Stewardship
- 10 Sustainable Operations

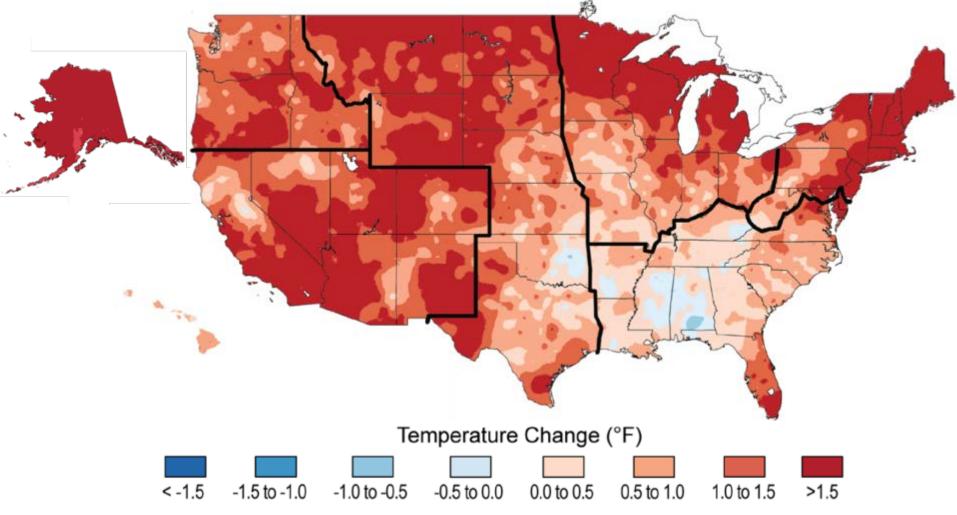
USFS information & tools

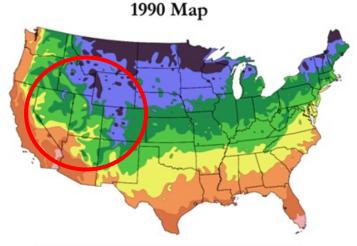


56 million years ago

Cartoon by Emily Greenhalgh, NOAA Climate.gov.

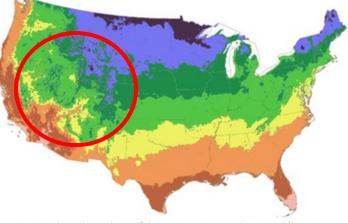
Rate of Climate change


The average global surface temperature has risen 1.53°F over the past 100 years


IPCC 2007

Climate change or global warming?

Contiguous US: 1991-2012 departure from 1901-1960 average


USDA plant hardiness zones

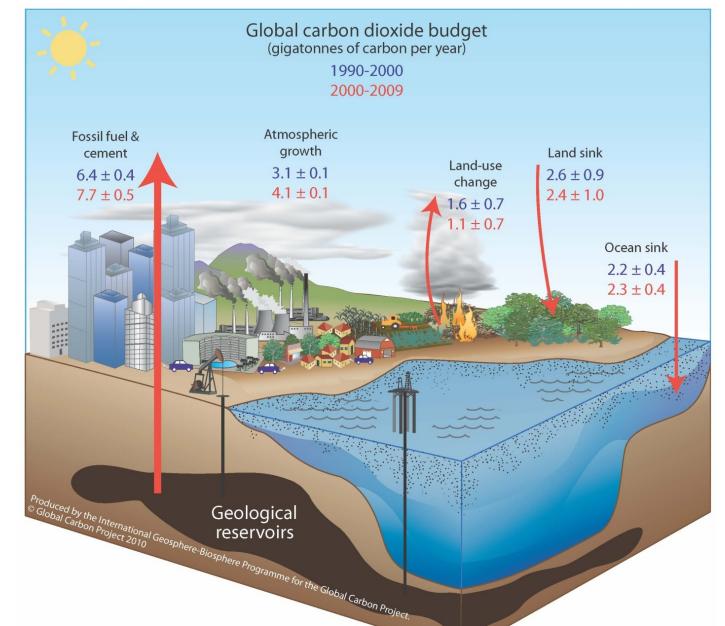
After USDA Plant Hardiness Zone Map, USDA Miscellaneous Publication No. 1475, Issued Januay 1990

© 2006 by The National Arbor Day Foundation®

2012 Map

Re-colored version of the 2012 USDA Plant Hardiness Zone Map (available at: <u>http://planthardiness.ars.usda.gov/PHZMWeb/</u>)

Climate Change Trends


- About 1.5F warming, with regional variability.
- General increases in annual precipitation, except in the southwest.
- More big rain events, more of annual precip within those events.

The earth has warmed and the climate is changing as a result, with regional variations.

To say or not to say ... "climate change" ... that is the question ...

Temperature Precipitation **Science** Drought **Changing conditions Ecological transitions** Greenhouse gases **Future resource conditions**

Anthropogenic change?

Net sources and sinks

The atmosphere is massive, how can we change it?

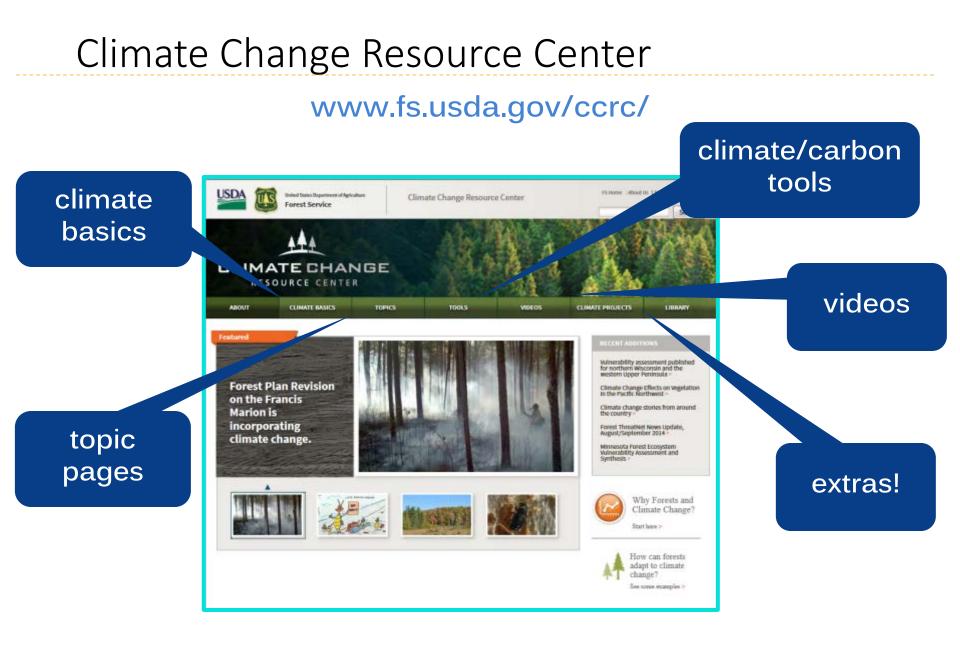
- Fossil carbon is an addition it has been isolated from the carbon cycle for millions of years.
- Greenhouse gases have different atmospheric lifetimes –Water vapor lasts hours to days – CO2 may last decades to centuries – Methane lasts about 12 years
- Land cover change transfers carbon to the atmosphere.

The measurement record clearly shows our additions to the atmosphere.

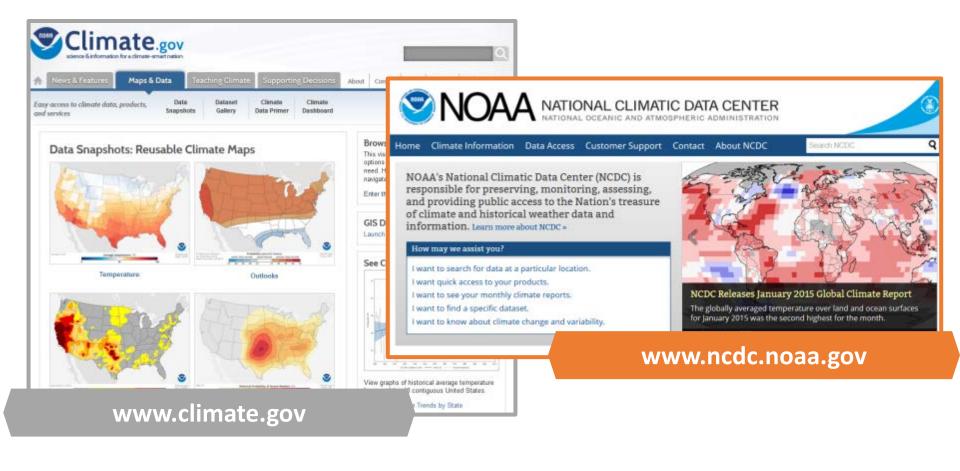
Isn't future climate change uncertain?

- Models have acknowledged shortcomings.
- They do well globally with air temps, and less well with precipitation.
- Great at multi-decadal trends, more uncertainty at multi-year.
- Emissions uncertainties are inherent.

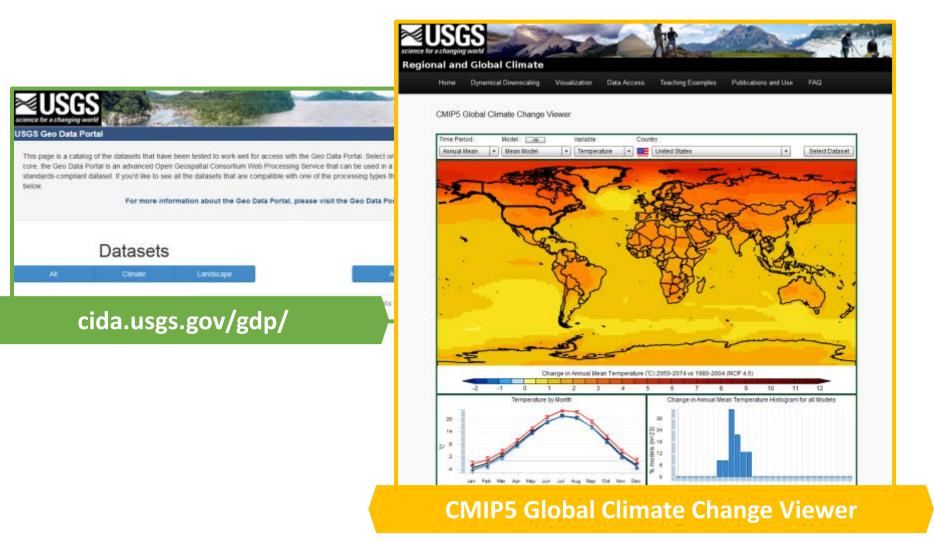
All models are uncertainty, some are useful – best to use multiple models, think long term, and consider a range of futures.


What will all this mean for forests?

Some benefits, but more widespread increases in stress.


- Precipitation
- Temperature
- CO₂ fertilization
- Extreme weather events
- Longer growing seasons
- Species range shifts
- Expanded pest and disease ranges
- Decreased snow pack and early thaw
- Increased frequency and intensity of fire

Consider local species, trends, and landscape!


Where can I find help and tools?

Datasets and maps

Datasets and maps

Datasets and maps

		Search Data.gov	٩
DATA.GOV	DATA TOPICS	IMPACT APPLICATIONS DEVELOP	ERS CONTACT
Themes - Data Resources Cha	illenges FAQ Con	act Climate	
Here you can find data related to cli	imate change that ca	n help inform and prepare America's	communities,
businesses, and citizens. Initially, in	this pilot phase, you	can find data and resources related to	o coastal
flooding, food resilience, water and	ecosystem vulnerab	ility. Over time, you will be able to fin	d additional
data and tools relevant to other imp	oortant climate-relat	ed impacts, including risks to human	health, and
energy infrastructure. Please share	your feedback.		

HIGHLIGHTS

Launch of Ecosystem-Vulnerability theme of Climate.Data.Gov

The U.S. government has released a collection of data and tools that will advance planning capabilities for the impacts of climate change on our nation's ecosystems. The data and tools will provide information and will help to stimulate innovation in preparing for climate impacts on fire regimes, water availability, carbon sequestration, biodiversity conservation, ocean health, and the spread of invasive species. Here are some examples of how the data and tools could be used:

- Help communities and natural resource managers determine if they are currently at risk from wildfires and if they will be impacted in the future due to wildfires becoming more prevalent and severe;
- Provide information to the public on their sources of water and their sensitivities to climate change;
- Aid in the public understanding of the role that ecosystems play in mitigating rising carbon dioxide levels due to their absorbing and storing of carbon, as well as how land management activities may influence storage capabilities;
- Identify the potential impacts of climate change on rare and endangered species, iconic species, and ecosystems;
- Identify which invasive species may threaten specific locations and their impacts on local communities and their economies. This
 effort will contribute to early detection, rapid response activities.

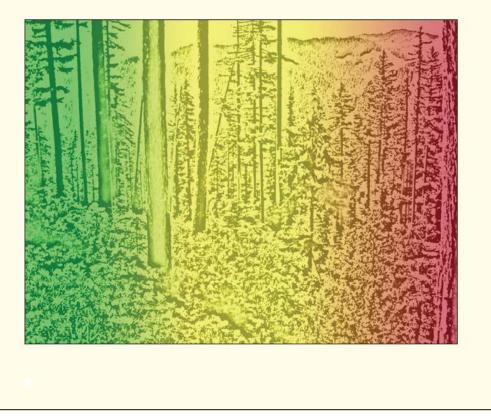
www.data.gov/climate/

Highlights

United States Department of Agriculture

Forest Service

Pacific Northwest Research Station


General Technical Report PNW-GTR-870

December 2012

Effects of Climatic Variability and Change on Forest Ecosystems:

A Comprehensive Science Synthesis for the U.S. Forest Sector

National Climate Assessment for forests

Advances in Global Change Research 57

David L. Peterson James M. Vose Toral Patel-Weynand Editors

Climate Change and United States Forests

High-profile book in international literature

Copyreption Matterial

United States Department of Agriculture

Forest Service

Pacific Northwest Research Station

General Technical Report PNW-GTR-855

November 2011

Responding to Climate Change in National Forests: A Guidebook for Developing Adaptation Options

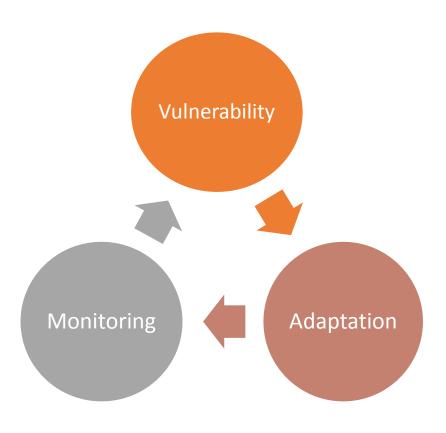
David L. Peterson, Constance I. Millar, Linda A. Joyce, Michael J. Furniss, Jessica E. Halofsky, Ronald P. Neilson, and Toni Lyn Morelli

Adaptation guidebook for National Forests

Climate Change Adaptation Library

HOME WHAT WE DO WHO WE ARE ADAPTATION LIBRARY PROJECTS

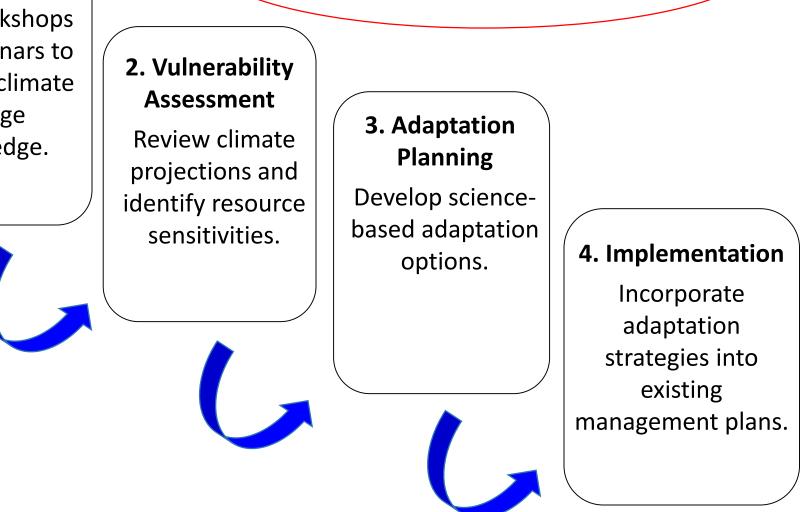
ADAPTATION PARTNERS SCIENCE-MANAGEMENT PARTNERSHIPS FOCUSED ON OLIMATE CHANGE ADAPTATION IN THE WESTERN UNITED STATES


http://adaptationpartners.org/library.php

Assessing and adapting to climate change

<u>Vulnerability Assessment</u> Evaluation of the degree to which organisms and systems are susceptible to the effects of climate change

Adaptation


Adjustment in natural or human systems to reduce harm, facilitate transitions, or exploit benefits of climate change

The adaptation process

Start with a sciencemanagement partnership

Education
 Hold workshops
 and webinars to
 increase climate
 change
 knowledge.

Typical assessment topics

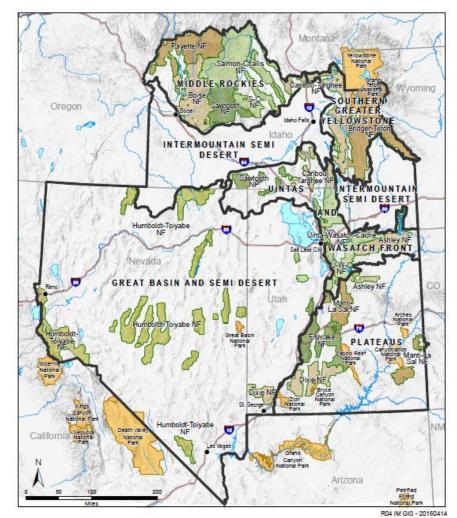
- Vegetation (ecological disturbance)
- Wildlife
- •Water
- •Fish

New assessment topics

- Recreation
- Infrastructure
- Ecosystem services
- Cultural resources

We're making progress

Assessments completed or in process


Products and outcomes

- Climate change thinking and awareness
- •Climate change partnerships
- Data gathering and information sharing
- Website (http://adaptationpartners.org)
- •USFS General Technical Report and other scientific publications
- •Follow-up projects in the region

Products and outcomes

The most important outcome is <u>building</u> <u>organizational capacity</u> to address the effects of climate change on natural resources.

What does a climate change assessment look like?

Progress report for Region 4

The Intermountain Adaptation Partnership (IAP)

- Goals for the sciencemanagement partnership:
- Increase climate change awareness
- Assess vulnerability of natural resources
- Develop adaptation strategies and tactics

http://adaptationpartners.org/iap

IAP Vision and Strategy

- Identify key resources critical to ongoing resource management and planning
- Provide specialist training to apply climate change knowledge in land management
- Guide national forest planning and NEPA analysis
- Create partnerships with other agencies and stakeholders
- Publish a peer-reviewed assessment

Leaders and Partners

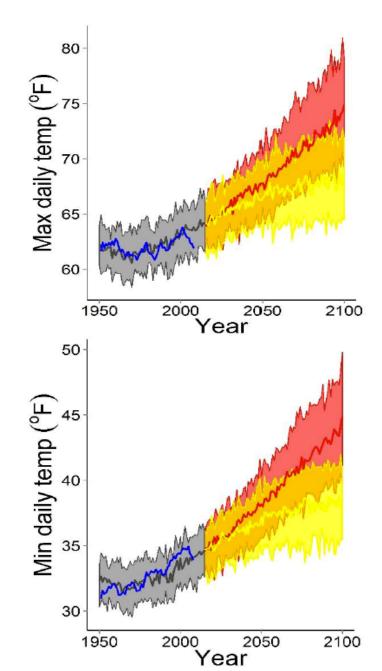
USFS: Region 4, S&PF, RMRS, PNW National Park Service **Bureau of Land Management USFWS** Landscape Conservation Cooperatives **USGS Climate Science Centers** Tribes States NGOs Universities **Conservation** groups

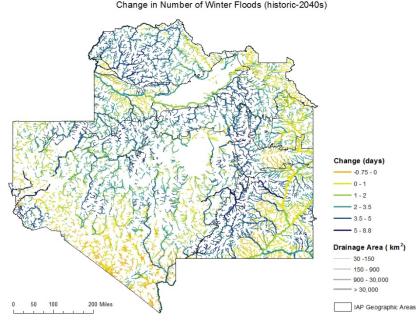
Two-Day Workshops

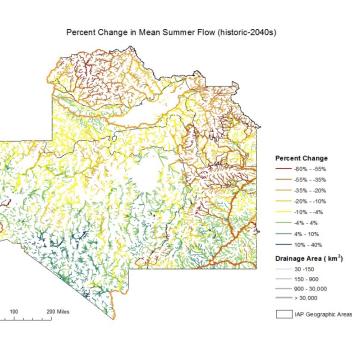
<u>Dates</u>	<u>Location</u>	Total Attendees	Forest Service	Partners
May 4-5	Ogden, Utah	50	41	9
May 11-12	Boise, Idaho	53	32	21
May 18-19	Salt Lake City, Utah	54	37	17
May 25-26	Reno, Nevada	43	28	15
June 1-2	Idaho Falls, Idaho	51	37	14

IAP Focus Areas

- Climate
- Hydrology, Soil, and Water
- Aquatic Species
- Vegetation
- Disturbance
- Terrestrial Animals
- Recreation
- Infrastructure
- Cultural Heritage
- Ecosystem Services




Climate


- Average temperature has increased 1.5F in the past 50 years.
- Average temperature will increase 3-4F by 2050, 7-10F by 2100.
- Precipitation may increase slightly in winter (uncertain)

Hydrology, soil, water

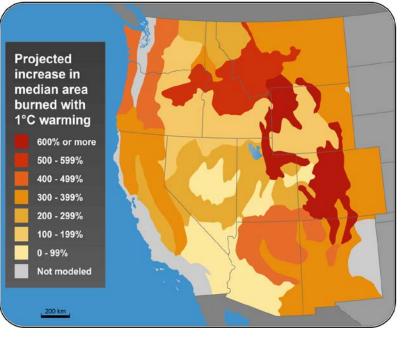
- Snowpack will become intermittent at low-mid elevations
- Reduced snowpack will cause (1) higher winter peak flows, (2) lower streamflows and higher stream temp. in summer
- Groundwater and water supplies will decrease

Aquatic species

- Higher stream temps. will reduce habitat for coldwater fish, especially bull trout, cutthroat trout
- Less water & higher temp will stress amphibians, mussels, & springsnails
- Habitat for most species will be retained at higher elevations

Vegetation

- Most low-mid elevation forests will grow slower; some high-elevation forests will grow faster
- Distribution & abundance of species will shift
- Increasing fire & insects will reduce dominance of susceptible species



Disturbance

- Area burned by wildfire will increase 200-300% by mid-21st century
- Bark beetle outbreaks will be more common in lodgepole pine & ponderosa pine
- Mass wasting & flooding will be more common in some areas

Wildfire area burned, 2050

Terrestrial animals

- Snow-dependent mammals (wolverine, lynx) will be especially vulnerable
- Amphibian species will be vulnerable to changes in ponds & riparian areas
- Animal species that require specific vegetation (e.g., sage-grouse) may be vulnerable

Recreation

- Warm-weather activities will expand (esp. shoulder seasons)
- Winter activities will decrease, especially at low-mid elevations
- Water-based activities will probably increase, as recreationists avoid heat

Cultural heritage

- Increased fire & flooding will threaten the integrity of artifacts
- Increased aridity & erosion will make artifacts more vulnerable to illegal collecting
- Altered vegetation may affect some cultural sites & landscapes

Ecosystem services

- Less productive range & altered land use will reduce grazing values
- Less snow, more drought, & more fire will reduce water supplies & quality
- Ranges of native pollinators may decrease
- Increased disturbance will reduce carbon storage

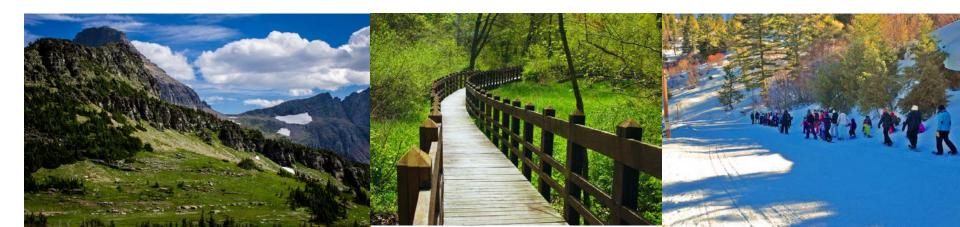
Infrastructure

- Increased flooding will damage roads, culverts, & bridges
- Increased flooding & avalanche hazard will reduce visitor safety
- Increased road damage will reduce visitor access, especially in floodplains

How do we manage for resilient systems in a warmer climate?

Infrastructure Risk

- Climate change is expected to increase risk
 - Extreme rainfall
 - Snowmelt changes
 - Flooding
- Increased risk to:
 - Infrastructure
 - People
 - Ecosystems
- Type of risks include
 - Washouts
 - Landslides
 - Culvert failure
 - Streamside road avulsion



Assessment Approach – Three Levels

- Assessment Level 1 Infrastructure presence
 - Know what infrastructure exists how much of each type and where
- Assessment Level 2 Regional scales of analyses
 - National Forests
 - Proximity to streams
 - For roads and streams in particular, road-stream intersections
 - Slope steepness
 - Soil type

• Assessment Level 3 – Smaller scales of analysis

- Watersheds
- Past ERFO sites
- Areas of high human presence
- High infrastructure values

Types of Infrastructure

- Road transportation system: roads, bridges, culverts
- Trails, trail bridges
- Buildings
- Developed Recreation Sites
- Dams

Higher Risk Infrastructure

- Communities that rely on road access
- Steep terrain and erosive soil types
- Stream channels with high avulsion
- Sensitive ecosystems
- Areas that have failed before
- Aging and deteriorating infrastructure
- High risk of wildfire, landslides, flooding

Road Transportation System – Level 1

Table 10.1-Road mileage for different maintenance levels in national forests in the U.S. Forest ServiceIntermountain Region

		Mair	itenance Level		-		
<u>Forest</u>		1	2	3	4	5	Total
Ashley National Forest		23.28	973.96	339.35	156.64	87.57	1,580.80
Boise National Forest		1,527.18	2,503.12	541.88	14.34	-	4,586.52
Bridger-Teton National Forest		571.96	983.47	385.01	213.95	-	2,154.39
Dixie National Forest		992.18	2,075.37	460.37	48.89	14.77	3,591.58
Fishlake National Forest		42.72	1,710.40	168.38	12.41	7.26	1,941.17
Manti-LaSal National Forest		302.28	1,615.55	290.09	9.02	-	2,216.94
Payette National Forest		841.77	1,649.46	428.4	35.78	3.96	2,959.37
Salmon-Challis National Forest		1,198.25	2,344.79	341.61	41.39	1.51	3,927.55
Sawtooth National Forest		268.14	1,340.80	269.61	16.8	20.93	1,916.28
Caribou-Targhee National Forest		460.62	1,528.89	577.44	177.05	23.44	2,767.44
Humboldt-Toiyable National Forest		493.14	4,351.46	626.12	68.6	16.8	5,556.12
Uinta-Wasatch-Cache National Forest		181.66	1,689.05	434.25	140.78	124.52	2,570.26
	Grand Total	6,904.18	22,768.32	4,865.51	939.65	300.76	35,778.42
OPER MAINT LEVEL	Description						
1 - BASIC CUSTODIAL CARE (CLOSED)	Assigned to roads that have been placed in storage (>one year) between intermittent uses. Basic custodial maintenance is performed. Road is closed to vehicular traffic.						
2 – HIGH CLEARANCE VEHICLES	Assigned to roads open for use by high clearance vehicles.						
3 – SUITABLE FOR PASSENGER CARS	Assigned to roads open for and maintained for travel by a prudent driver in a standard passenger car.						
4 – MODERATE DEGREE OF USER COMFORT	Assigned to roads that provide a moderate degree of user comfort and convenience at moderate travel speeds.						
5 – HIGH DEGREE OF USER COMFORT	Assigned to roads that provide a high degree of user comfort and convenience.						

Region 4 Roads Operation Maintenance Level Mileage

Bridge System – Level 1

Intermountain Region Forests	Adequate	Structurally Deficient	Total
Ashley	28	7	35
Boise	114	6	120
Bridger Teton	96	20	116
Dixie	37	8	45
Fishlake	13	1	14
Manti La Sal	26	3	29
Payette	59	9	68
Salmon-Challis	115	6	121
Sawtooth	95	6	101
Caribou-Targhee	53	18	71
Humbolt-Toyabee	29	5	34
Uinta-Wasatch-Cache	94	2	96
Total	759	91	850

Trail System – Level 1

Intermountain Region Forests	Miles	Trail Bridges
Ashley	1,108	41
Boise	1,970	67
Bridger Teton	3,436	47
Dixie	1,912	23
Fishlake	2,351	3
Manti La Sal	953	5
Payette	1,841	103
Salmon-Challis	3,452	53
Sawtooth	2,491	84
Caribou-Targhee	3,950	52
Humbolt-Toyabee	3,578	8
Uinta-Wasatch-Cache	2,579	51
Total	29,622	537

Buildings – Level 1

Intermountain Region Forests	# FS Buildings	Total DM	Total CRV	
Regional	5	\$389,006	\$1,636,835	
Ashley	116	\$3,028,836	\$26,390,537	
Boise	303	\$7,972,863	\$70,230,404	
Bridger-Teton	212	\$1,755,813	\$38,380,272	
Dixie	88	\$3,265,997	\$21,176,792	
Fishlake	71	\$218,288	\$8,625,186	
Manti-LaSal	66	\$684,676	\$9,297,776	
Payette	238	\$13,935,458	\$54,305,579	
Salmon-Challis	274	\$18,560,269	\$46,087,048	
Sawtooth	144	\$7,874,535	\$25,735,418	
Caribou-Targhee	149	\$855,023	\$36,137,504	
Humboldt-Toiyabe	238	\$6,717,168	\$64,322,268	
Uinta-Wasatch-Cache	229	\$7,290,860	\$43,624,253	
Total	2,133	\$72,548,793	\$445,949,869	
DM = Deferred Maintenance				
CRV = Current Replacement Value				

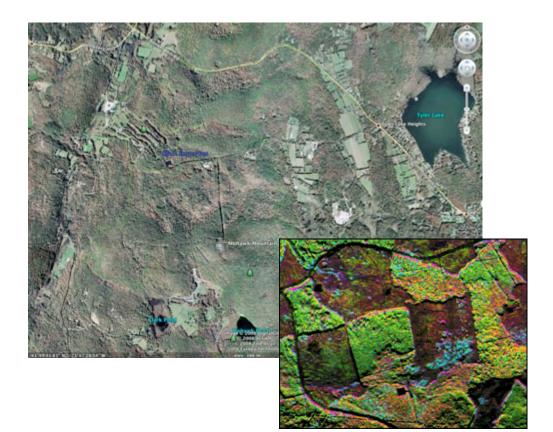
Dams System – Higher Risk

- Communities that rely on resources may see agricultural resources change into drinking water resources
- Communities that are downstream
- Areas that have failed before
- Inadequate safety provisions
- Inadequate spillways for extreme storms
- New hydrologic regimes where snowfall and snowpack is declining

Dams System – Level 1

Intermountain Region Forests	Active	Inactive/disposed	Total
Ashley	29	0	29
Boise	5	3	8
Bridger Teton	16	5	21
Dixie	40	6	46
Fishlake	36	13	49
Manti La Sal	36	9	45
Payette	13	0	13
Salmon-Challis	9	0	9
Sawtooth	6	1	7
Caribou-Targhee	14	0	14
Humbolt-Toyabee	32	6	38
Uinta-Wasach-Cache	48	20	68
Total	284	63	347

Extreme weather + increased disturbance: Our primary challenge


Adaptation strategy

Increase landscape diversity

Diversify spatial distribution of forest age and structure

Implement thinning and fuel treatments across large landscapes.

Orient the location of treatments in large blocks to modify fire severity and spread.

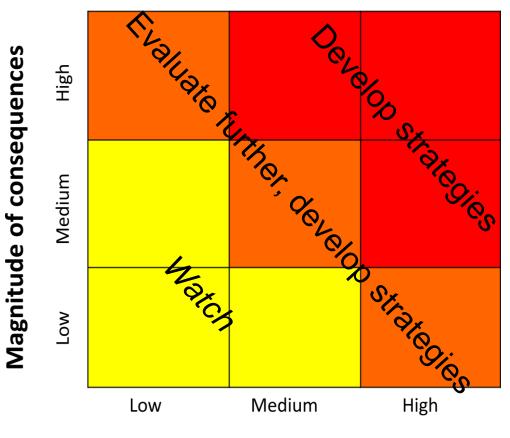
Adaptation strategy

Treat large disturbances as an opportunity

Develop management strategies and on-theground actions for implementation following wildfire and insect outbreaks.

Include long-term experimentation.

Get the plans approved.



Adaptation strategy

Incorporate risk assessment

Quantify or at least estimate the risk of climate change effects on natural resources.

Use risk assessment to guide adaptation responses.

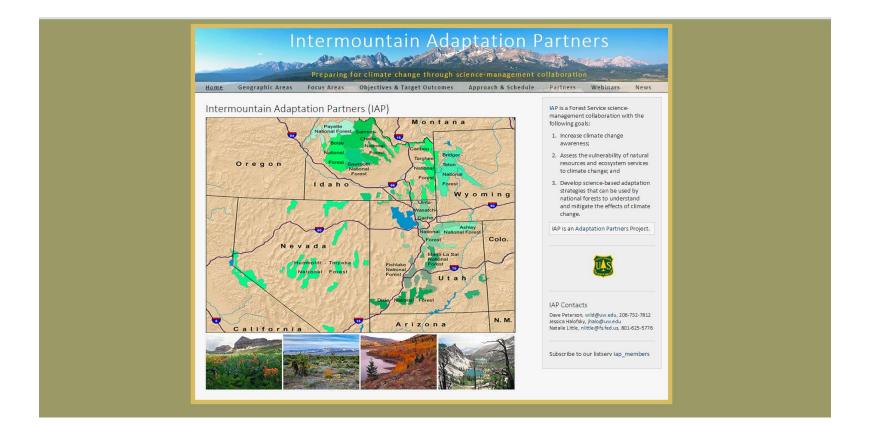
Likelihood of impact

Breakout Group/Resource Area:

Group Members:

1	Sensitivity to climatic variability and change:					
2	Adaption Strategy / Approach:					
		Specific Tactic – A	Specific Tactic – B	Specific Tactic – C		
3	Tactics					
4	Where can tactics be applied?					
5	Opportunities for implementation					
6	Comments					

ADAPTATION SYNTHESIS: WATER RESOURCES


Sensitivity to Climate Change	Adaptation Strategy	Adaptation Tactic
Higher peak flows will lead to increased road damage at stream crossings	Increase resilience of stream crossings, culverts, and bridges to higher peak flows	 Continue to replace culverts with higher capacity culverts Complete unit-wide inventory of culverts and bridges, including GPS locations of structures and accurate culvert data Consider a process for replacing culverts based on projected future, rather than historical, peak flows Consider prioritizing structure replacement in high-risk (mixed- rain-and-snow) watersheds Reroute roads out of flood plains
	Increase resistance of road surfaces to higher peak flows at stream crossings	 Install hardened stream crossings Perform a basin-wide assessment of current hydrological interactions with roads Continue to use grade control structures, humps, and water bars to reduce velocity and redirect flow

Vulnerability assessment & adaptation strategies will inform:

- Forest plan revisions
- NEPA documents
- Local management projects
- Restoration efforts
- Monitoring programs

For information on webinars and workshops, and to subscribe to the listserv, see:

http://adaptationpartners.org/iap

Adaptation is a marathon, not a sprint

