

Recent Innovations in Short Span Steel Bridges

Overview and SSSBA Program Activities

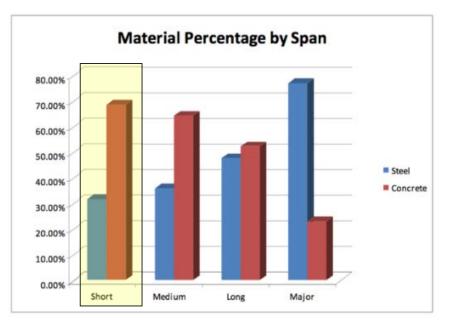
2020 ACE Conference: October 22, 2020

Gregory K. Michaelson, Ph.D., P.E.

Associate Professor, Marshall University

michaelson@marshall.edu

Outline


- SSSBA Overview
- Short Span Steel Bridge Standards & eSPAN140
 - Development
 - Examples of Use
 - State Standard Development
- Press-Brake-Formed Steel Tub Girders (Innovative Solutions)
 - Research and Development
 - Summary of Research to Date
 - Applications
- Available Resources

The Problem...

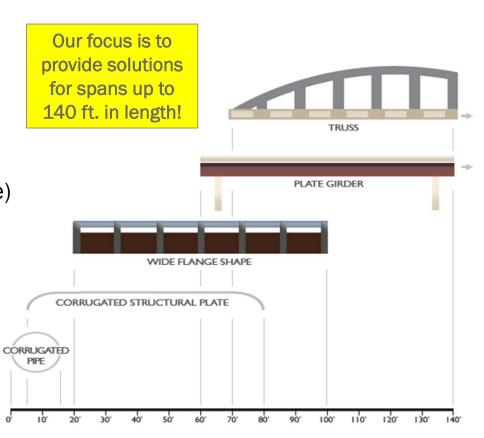
- Bridge engineers are well trained on the use of short span concrete bridges.
 - In fact, over than 80% of the short span bridges in the United States are made of concrete.
- Many County and (DOT) engineers are simply not educated/familiar with the design, construction, and economics of short span steel bridges.
 - Concrete provides simple, standardized, costeffective, "tinker toy" solutions to construct short span steel bridges.
 - Steel bridges are "perceived to be too" complex,
 "Swiss watch"-like, and too expensive.

The Solution (Why Use <u>Steel</u> for Bridges?)

- First Cost/Economical
 - 25% less than concrete with cost-efficient design, fabrication, and construction practices
- Modular
 - Light weight, prefabricated options, easy to construct (lends to standardized plans)
- Durable
 - Highly resistant to natural disasters (seismic)
 - Long life cycle (weathering steel & galvanized options)
- Steel is Resilient
 - Repair (damaged bridges can be repaired)
 - Reusable (recondition old beams and use for a new bridge)
 - Repurpose (functionally obsolete used for reduced loads, trails etc.)
 - Recycle (steel 100% recyclable and better than the original)
 - Recycled content of US plate 70%, rolled beams 85%

The Short Span Steel Bridge Alliance

- Program officially started September 2007
 - Objective make steel the material of choice for short span steel bridges.
 - Short span steel bridges have spans up to 140 ft
 - First North American industry-wide effort to provide education and design support for short span steel bridges.

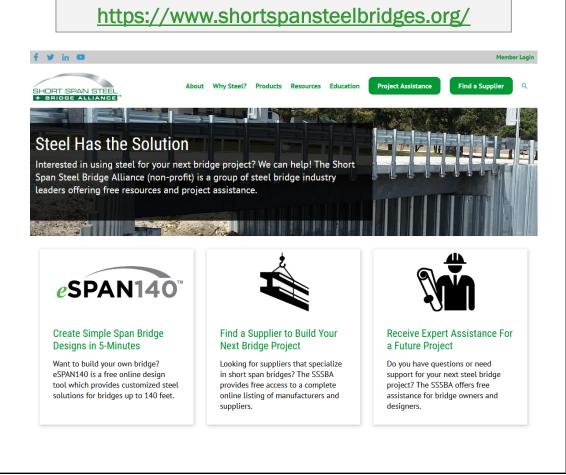


What Does SSSBA Do?

- <u>Education</u> (webinars, workshops, forums, conferences)
- <u>Technical Resources</u> (standards, guidelines, best practices)
- <u>Case Studies</u> (economics: steel is cost-effective)
- <u>Simple Design Tools</u> (eSPAN140)
- Answer Questions (Bridge Technology Center)
- <u>Access to Industry Partners</u> (industry contact list)

Span Length

• All FREE for bridge owners, designers, & universities



SSSBA Website

- eSPAN140 Web-based Design Tool
- Bridge Technology Center
- Technical Design Resources
- Project Case Studies
- News Updates & Social Media
 - Twitter, LinkedIn, Facebook
- Email Newsletter (sign-up to receive it)

Join Today!

Dan Snyder (SSSBA Director) <u>dsnyder@steel.org</u> (301) 367-6179

http://www.espan140.com/

Free Online Design Tool for Short Span Steel Bridges

Utilizes Standard Short Span Steel Bridge Designs

SHORT SPAN STEEL BRIDGE DESIGN STANDARDS

Standards for Short Span Steel Bridge Designs

- Goals:
 - Economically competitive
 - Expedite & economize the design process
 - Simple repetitive details & member sizes.
- Bridge Design Parameters:
 - Span lengths: 40 feet to 140 feet (5-foot increments)
 - Girder spacing: 6 feet, 7.5 feet, 9 feet and 10.5 feet
 - Homogeneous & Hybrid plate girders with limited plate sizes
 - Limited Depth & Lightest Weight Rolled Beam Sections
 - Selective cross-frame placement/design (AASHTO/NSBA)

Primary value is use as an estimating tool!

- Now have the ability to produce a valid steel bridge design in minutes
- Obtain a cost estimate from a fabricator within a day
- Can directly compete with concrete alternate
- Design can then be further optimized

One-stop shop for customized steel bridge and culvert solutions!

- eSPAN140 provides:
 - Standard designs and details for short span steel crossings
 - Rolled Beam and Plate Girders
 - Corrugated Steel Pipe and Structural Plate
 - Manufacturers' Steel Solutions (SSSBA Partners)
 - Coatings Solutions
 - Industry Contacts
 - Contacts can provide budget estimates and pricing information

Free and easy to use!!! http://www.espan140.com/

Step 1. Create a User's Account

Step 2. Input Your Specific Project Details

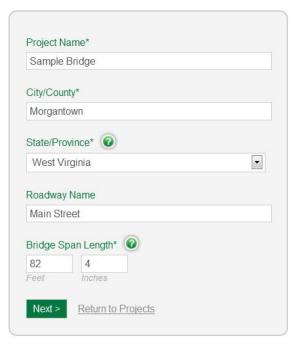
Step 3. View Your Instant Customized Solutions Books

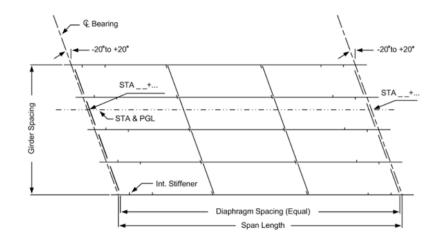
eSPAN140 Example

• Start new project:

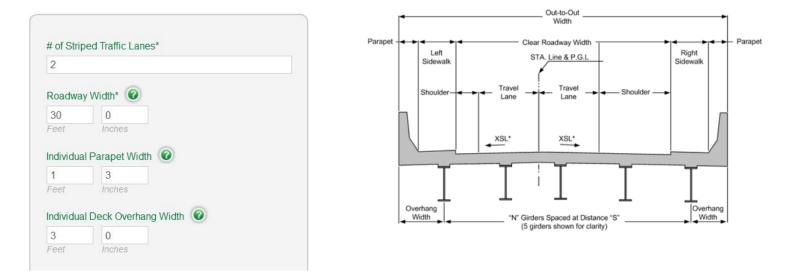
My Projects

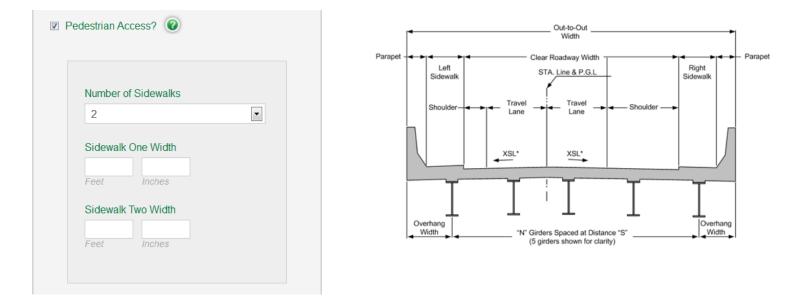
Welcome to eSPAN140. If this is your first time here, please click on "Start New Project" to begin.

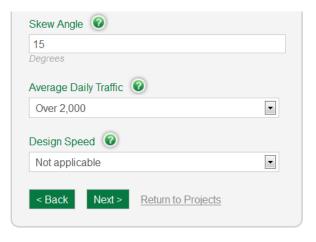

If you have already created a project, please use the table below to view past projects, complete pe existing inputs you provided, please click on "Duplicate". This will allow you to create a new project I have multiple bridges to design and have only a few input values to change).

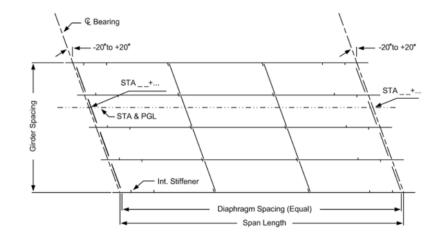

Start New Project

• Step 1: Project Information

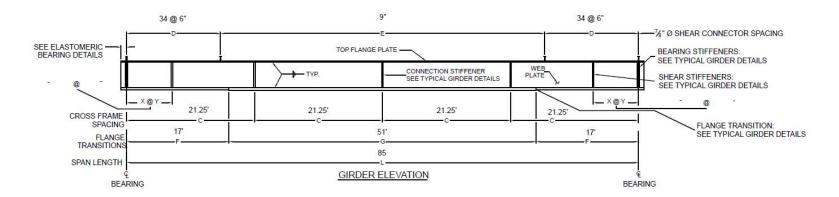



• Step 2: Project Details (general dimensions)


• Step 2: Project Details (pedestrian access option)

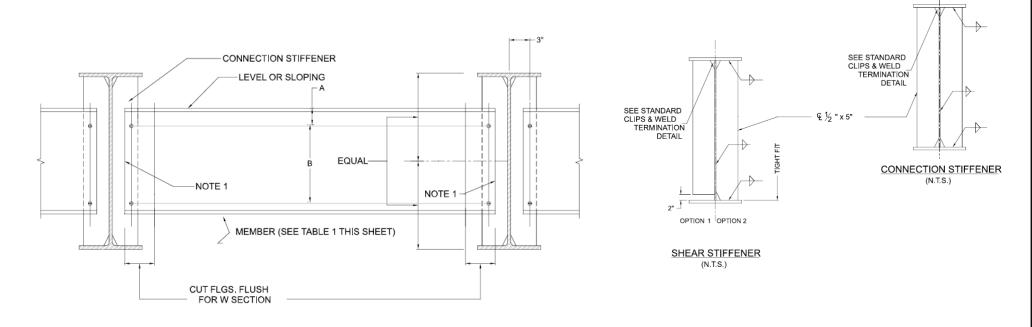


• Step 2: Project Details (remaining details)



• Example output (sample plate girder elevation):

COMPOSITE PLATE GIRDER WITH PARTIALLY STIFFENED WEB - 4 GIRDERS AT 8' 10" GIRDER SPACING, HOMOGENEOUS



SPAN (L) - ft	PLATE GIRDER SIZE									SHEAR CONNEC	TOR MAX. SPAC-		
	TOP FLANGE . - in	BOTTOM FLANGE (F)		BOTTOM FLANGE (G)			DIAPHRAGM	SHEAR STIFFENERS		ING		INDIVIDUAL GIRDER	
		PLATE - in	LENGTH - Ft	PLATE - in	LENGTH - Ft	WEB PLATE- in	SPACING (C) - ft		Y - ft. (SPACING)		E	WEIGHT	
85	14 x 3/4"	14 x 1"	17'	14 x 2"	51'	32 x 1/2"	21.25'	-	-	34 @ 6"	9"	14,144 lbs	

• Example output (typical fabrication details, cont'd):

Applications of eSPAN140

- Jesup South Bridge, Buchanan County, Iowa 1st Direct Application
 - Buchanan County Iowa Constructed with County Crew
 - Replacement using W36x135 rolled beams
 - 65 feet length, 40 width
 - Over \$100,000 donations from members
 - Better Roads (February 2014)

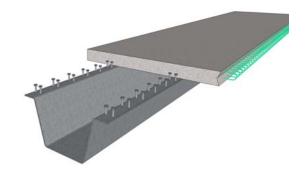
- High Point Lane Bridge in Boone County, Missouri, 102 ft.
 - Plate Girder (4 girder lines, 44" deep weathering steel)
 - Designed by Chris Criswell, Bartlett and West
 - Fabricated by Delongs Inc.
 - County "did not know steel could span over 100 feet" used eSPAN140 for preliminary designs
- KDOT Shawnee Co. Hwy K-4 over Blacksmith Creek, 112 ft.
 - Plate girder 5 girder lines, weathering steel
 - Designed by Bartlett and West, Fabricated by Delongs Inc.
 - Initially assumed that concrete would be cheaper, but the ability of eSPAN140 to produce a valid design in minutes and obtain a lower cost estimate from the fabricator within a day allowed steel to win the job.

Ohio Short Span Steel Bridge Design Standards

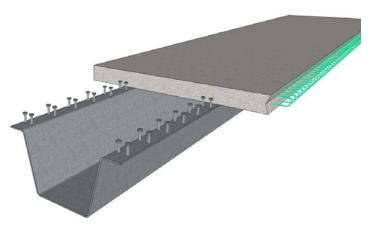
• Considering the success of eSPAN140, the Bridge Technology Center has been engaged in efforts to generate eSPAN140-based standards approved in each state.

 Recent efforts have been focused on in the State of 	of Ohio.
---	----------

COMPOSITE PLATE GIRDER WITH PARTIALLY STIFFENED WEB - 6' GIRDER SPACING														
SPAN - ft	PLATE GIRDER SIZE												CONTROLLING	
	TOP FLANGE		L/D Ratio	WEB		В	OTTOM FLANGE	(F)	В	OTTOM FLANGE	PERFORMANCE RATIO			
	WIDTH - in	THICKNESS - in	L/D Katio	DEPTH - in	THICKNESS - in	WIDTH - in	THICKNESS - in	LENGTH - ft	WIDTH - in	THICKNESS - in	LENGTH - ft	Label	PR	
60	14	1	29.84	22	0.5	-	-	-	14	1.125	60	FAT I BF	0.997	
65	14	0.875	29.86	24	0.5	-	-	-	14	1.25	65	FAT I BF	0.981	
70	16	0.75	30.00	26	0.5	-	-	-	16	1.25	70	CFY SLC	0.969	
75	16	0.875	29.88	28	0.5	-	-	-	16	1.25	75	FAT I BF	0.971	
80	14	0.875	29.65	30	0.5	-	-	-	14	1.5	80	FAT I BF	0.995	
85	14	0.875	29.57	32	0.5	-	-	-	14	1.625	85	FAT I BF	0.967	
90	16	0.75	29.79	34	0.5	16	0.75	18	16	1.5	54	FAT I BF	0.963	
95	16	0.875	29.71	36	0.5	16	0.875	19	16	1.5	57	FAT I BF	0.988	
100	18	0.75	29.91	38	0.5	18	0.75	20	18	1.375	60	FAT I BF	0.992	
105	18	0.75	29.82	40	0.5	18	0.75	21	18	1.5	63	CFY SLC	0.97	
110	16	1	29.58	42	0.5	16	1	22	16	1.625	66	FAT I BF	0.981	
115	18	0.875	29.76	44	0.5	18	0.875	23	18	1.5	69	FAT I BF	0.972	
120	18	1	29.69	46	0.5	18	1	24	18	1.5	72	FAT I BF	0.984	
125	16	1	29.70	48	0.5	16	1	25	16	1.5	75	CFY STR IV	1	
130	20	0.875	29.79	50	0.5	20	0.875	26	20	1.5	78	CFY STR IV	0.996	
135	20	1	29.72	52	0.5	20	1	28.5	20	1.5	78	STR I FLEX	0.955	
140	22	1	29.80	54	0.5	22	1	31	22	1.375	78	STR I FLEX	0.959	

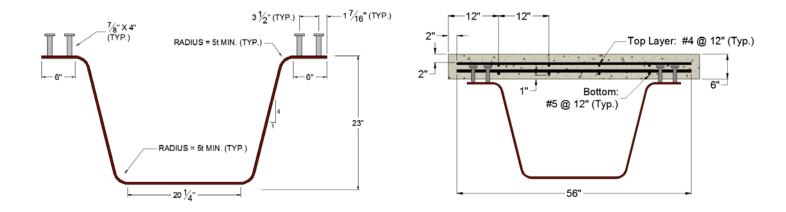


Innovative Design Solutions for Short Span Bridges


PRESS-BRAKE-FORMED STEEL TUB GIRDERS

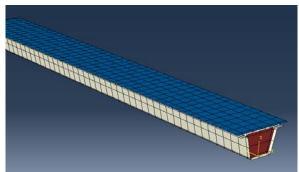
Press-Brake-Formed Steel Tub Girders

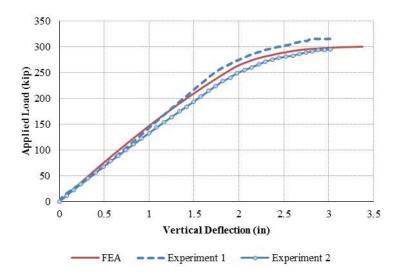
- Modular shallow trapezoidal boxes fabricated from cold-bent structural steel plate
 - Weathering steel or galvanized.
- Potential for economy through a significant reduction in fabrication costs due to cold-bending versus welding of the section and mass production.
- Reduces need for stiffeners and cross frames.
- Advantages include:
 - Accelerated with precast deck (install in 1 or 2 days)
 - Modular
 - Simple to fabricate and install
 - Potential to replace thousands of bridge in need of repairs
 - Opens doors for "new" bridge fabricators



Experimental Testing & Analytical Modeling

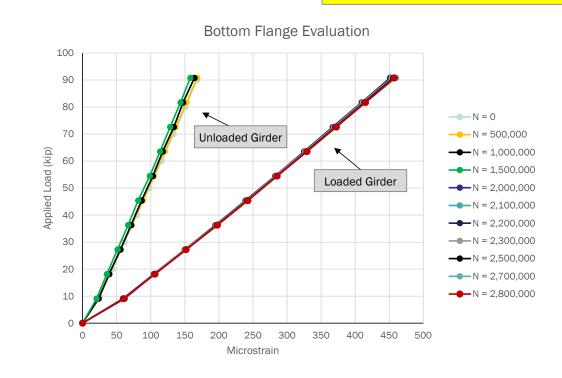
- Testing was conducted on composite, noncomposite, and modular flexural specimens:
 - 84" × 7/16" PL
 - Dimensions shown below:




Experimental Testing & Analytical Modeling (cont'd)

• Single module testing (assessing flexural capacity):

One composite girder was able to withstand over 300 kips before failure!!!



Experimental Testing & Analytical Modeling (cont'd)

• Double module testing (assessing fatigue/service behavior):

No appreciable change in behavior after 2.8 million cycles of loads!

PBFTG Applications

- Amish Sawmill Bridge (Buchanan County, IA)
 - Brian Keierleber, P.E., was awarded \$350,000 from
 FHWA IBRD Program to replace the Amish Sawmill Bridge at 1358 Dillon Avenue in Fairbank, Iowa.
 - The grant laid the groundwork to complete the first installation of the proposed modular press-brake-formed steel tub girder system in the U.S.
 - Construction on the Amish Sawmill Bridge began in the late summer of 2015 and was completed in December 2015
 - Completing the journey from concept to implementation in under three years, a remarkable feat in the field of bridge engineering.

PBFTG Applications (cont'd)

- Muskingum County, OH
 - PBFTG combined with SPS deck system.
 - Led to extremely shallow superstructure.
 - Served a significant advantage for hydraulic opening
 - Winner of NSBA 2018 Innovative Bridge Award

PBFTG Applications (cont'd)

• Fourteen Mile Road (Lincoln County, WV)

PBFTG Applications (cont'd)

Additional Applications

Boone County, MI

Bridge Technology Center


- Free resource available to bridge owners and designers with questions related to:
 - Standard design and details of short span bridges (plate & rolled beam)
 - Standard design and details of corrugated steel pipe and structural plate.

- Training & Education Available!
 - Topics
 - Bridge Engineering-101
 - Steel bridge economy & cost-effective design
 - Standard designs (rolled beam, plate, CSP, structural plate)
 - Case studies/cost analysis
 - Format
 - Half-day workshops (county engineers/LTAPs)
 - Webinars (online training / presentations)
 - Steel Bridge Forums (DOTs)
 - Conferences/Trade show presentations
 - Technical Design Support (Bridge Technology Center)
 - SSSBA Website (Solutions Center, videos, etc.)

Steel Market Development Institute

dsnyder@steel.org

Website: <u>http://www.shortspansteelbridge.org/</u>

Short Span Steel Bridge Alliance – SSSBA

@ShortSpanSteel

Questions?

Gregory K. Michaelson, Ph.D., P.E. Assistant Professor, Marshall University <u>michaelson@marshall.edu</u>

